
NASA Technical Memorandum 102721

(NASA-TM-102721) GCS PROGRAMMER'S MANUAL

(NASA) 28 p CSCL 09B

G3/O1

N?I-170] 2

GCS PROGRAMMER'S MANUAL

Douglas S. Lowman, B. Edward Withers,
Anita M. Shagnea, Leslie A. Dent, and

Kelly J. Hayhurst

December 1990

National Aeronautics and
Space Administration

Langley Research Center
Hamplon, Virginia 23665-5225

Preface

• (Fh ". GCS Proqrammer's Manual is Document No. 4 in a series of 15 documents which fulfill

the Radio Technical Commission for Ae,'onautics RTC, A/1)O-178A guidelines, "Software

Considerations in Airborne Systems and l',qmpment Certlficatl m. [1] The documents are

numbered as specified in tile DO-178A guidelines. The documents in the series are used to

demonstrate compliance with the DO-178A guidelines by describing the application of the

procedures and techniques used during the devclopme,t of flight software. These documents

were prepared under contract with NASA Langley I{esearcll (,c itc'r as a part of their long-

term research program addressing the fundamentals of the softwa.re failure process.

_.Phis project consists of two complemmltary goals: firsl,, to dew;lop software for use by the

Research Triangle Institute (RTI) in the software error studies research program sponsored by

NASA Langley Research Center [2]; second, {o use and assess the I TCA/DO- rSA guidelines

for the Federal Aviation Administration (FAA). The two goals are complementary in that.

the use of the structured DO-178A guidelines in the development of the software will ensure

tha.t the test specimens of software have been developed according to the industry standards

for flight-critical software. The error studies research analyses will then be conducted using

high-quality software specimens.

The implementations will be subjected to two different software testing environments:

verification of each implementation according to the RTCA/DO -178A guidelines and repli-

cated random testing in a configuration which runs more than otle test specimen at a time.

The term implementations refers to bodies of code written by different programmers, while a

version is a piece of code at a. particular state (i.e., Version 2.0 is the result of code review).

This research effort involves the gathering of product and process dat_ from every phase

of software development for later analysis. More information on the goals of the Guidance

and Control Software (GCS) project are available in the GCS Plan for Software Aspects of

Certification.

The series consists of the following documents:

- GCS Configuration Index Document No. 1

- GCS Development Specification Do('umont No. 2

- GCS Design Descriptions One for each software i,nplementation. Document No. 3

- GCS Programmer's Manual Document No. 4, includes Software Design Standards,

Document No. 12.

- GCS Configuration Management Plan Document No. 5A

- Software Quality Assurance Plan for GCS Document No. 5B

- GCS Source Listing One for each software implementation. Document No. 6

- GCS Source Code One for each software implementation. Document No. 7

p.i

GCS E.recutable Object Code One for each software implementation. Not available on

haxdcopy. Document No. 8

GCS Support/Developmc.nt System Configuration Description Document No. 9

GCS Accomplishment Summary Document No. 10

Software Versification Phtn for GCS Document No. 11

GCS Dec, elopment 5'pecificntio, Review Description /)oc[,ment No. I IA

GCS Simulator (GCS_S1M) Verification Plan and System Description Document No.

13

GC5' Plan for ,%fiware Aspects of Certification Document No. 14

p. ii

Contents

Preface

Foreword m

1 Activity Recording 2

2 Communication Protocol 3

3 Coding Standards for GCS Applications 5

4 Change Management 6

5 Error Handlers 7

6 Design Standards 8

7 Design Documentation Outline 9

8 Completing the Problem Report Form 12

9 Using the GCS Unit Test Log 16

10 New Formats for Documentation 18

11 Accuracy Requirements 19

12 Programmer Responsibilities 20

12.1 Introduction 20

12.2 Design Review 20

12.3 Code Review 20

12.4 Unit Testing 21

12.5 Subframe, Frame and System Testing 22

References 23

°wo

p. lll

7

Foreword

This document is the result of tile compilation of a variety of programmer instructions

which were developed to help further describe various phases of the Guidance and Control

Software (GCS) project as suggested by the RTCA/DO-178A guidelines. As required by

the DO-178A, this document describes additional requirements or instructions in the form

of a programmer's instruction manual. Each of the sections in this document describes a

separate programmer instruction. The author(s) of each section is listed in Table 0.1.

Table O.l. Author(s) of e;:_ch Programmer Instruction

Number Title Author

1 Activity Recording Douglas S. Lowman

2 Communication Protocol Douglas S. gowman

3 Coding Standards for GCS Applications B. Edward Withers

4 Change Managemen! B. Edward Withers

5 Error Handlers Douglas S. Lowman

6 Design Standards B. Edward Withers

7 Design Documentation Outline B. Edward Withers
8 Completing the 15roblem Report Form Kelly a. Hayhurst &

Leslie A. Dent

9 Using the CCS Module Test Log Leslie A. Dent

I0 New Formats for Documentation Anita M. Shagnea &

Douglas S. Lowman

11 Accuracy Requirements Anita M. Shagnea

12 Programmer Responsibilities Anita M. Shagnea

Document No. 12, Software Design Standards, required by the RTCA/DO-178A guide-

lines, has been included in this document as one of the programmer instructions (See Chap-

ter 7).

This document will be redistributed and the release number incremented any time there is

a change to the document -- this includes the creation of additional programmer instructions

or requirements.

Note: Instructions in this document supercede all programmer instructions distributed

prior to the adoption of the DO-178A guidelines. Due to the fact the GCS project is targeted

for VAX/VMS systems, all instructions in this document assume a prior knowledge of the

VAX/VMS operating system. Descriptions of software tools referenced in this document can

be found in the GCS Support/Development System Configuration Description document.

p. 1

1. Activity Recording

This chapter describes the various GCS progranlmer a(:tivity recording requirements. Activ-

ity recording will help in the collection of programmer effort data required by the project.

Activity recording is broken down into three separate areas. These areas include:

• software problem reports,

• weekly status reports, and

• engineering activity log.

Error and change management information will be re(:orded in the form of Software Problem

Reports (PRs) which are explained in detail in Section 8 of this document. (Note: PRs will

not be used until the programmer's first design review.)

Weekly status reports will give the project lnanagement team an idea. of the progress of

a particular programmer and perhaps alert them to unresolved problems that may impact

scheduled milestones. The weekly status reports will bc contained in a VAX Notes conference,

"WEEKLY", which has been created (by the project management team) and exists in the

project GCS_NOTES subdirectory. Each weekly status report should be in the form of a

note and will be in the following format:

Introduction -- An introduction covering the objectives and scope of the work effort for

the previous week.

Technical Progress Summary -- A description of the overall progress since tile last sta-

tus report. Descriptions shall include pertinent data to detail and explain any signif-

icant results achieved. A summary of progress, data and conclusions for significant

completed phases of the work shall be included, when needed, for comprehension of

the total progress to date.

Current Problems -- A description of current problems that may impede performance,

along with proposed corrective action. Such problems include technical and schedule

status.

The "Engineering Notebook" is also a VAX Notes conference in the project GCS_NOTES

subdirectory. This notebook is an on-line diary of thoughts, ideas, and work completed.

Information in this notebook may be included in the weekly status reports. This notebook

will not have a strict format; it can be organized and structured or completely unstructured.

From time to time someone from the project management team may review a programmer's

"Engineering Notebook" to see how things are going.

p. 2

2. Communication Protocol

This chapter describes how general infornla.tion will be distribul.(:([to (.ach GCS programmer

and how he may ask questions about the GCS specification, 1,11("simulator test-harness, or

RTI programming environment.

VAX Notes will be used to help manage programmer (lU(:sti(,ns and post general in-

formation. It also offers the advantage of keeping a detailed r(_cord of all questions and

responses which can be searched by a variety of criteria,, such a.s programmer name, subject,

or keyword.

In addition to the VAX Notes conferences mentioned in Section 1, each programmer

will have a "PROBLEM" conference where he may submit any questions, comments, and

problem resolution recommendations that relate to the GCS specification.

The programmers involved in this experiment will not be able to read information in

personal conferences other than their own. The GCS project management team will be

reviewing questions "posted" to each personal conference and "replying" to each question

by posting a response to the same personal conference.

In order to maintain a standard reporting method, the following format for posting

questions to the programmer "PROBLEM" conferences is to be used:

PROGRAMMER ID :

SUBJECT :

AUDIENCE : User Specific or General

QUESTION :

RECOMMENDATION(S):

If a question is deemed general by the project team, a response will be posted to the GCS

GENERAL INFORMATION "electronic bulletin board". Only the RTI project management

team will be able to post new items to this bulletin board. Programmers should read this

bulletin board, but unlike their personal conferences, they will not be able to post or reply

to items on this general bulletin board. This restriction helps assure that programmers do

not accidently post a question to a general bulletin board where it would be seen by other

programmers.

Following is a copy of the welcome message that has been posted to the GCS General

Information Bulletin Board, describing that bulletin board in a little more detail.

p. 3

-< GCS General Information Bulletin Board >-

Note 1.0 General Information No replies

DSL 37 lines 12-APR-1988 18:32

Welcome to the Guidance and Control Software (GCS) general information

bulletin board. The purpose of this bulletin board is to provide

a facility for distributing general information to all GCS programmers.

Information found in this bulletin board may include the following:

* Additional program instructions

* Questions asked by other programmers that require general answers

* General answers to questions (when appropriate)

* Other project development information

(eg. program implementation procedures, project schedule changes, etc.)

This bulletin board is divided into four topic areas. Each of the

topic areas will contain information relating only to that topic.

The following topics should be read by all GCS programmers:

* General Information

* GCS Specification Questions and Answers

* GCS_SIMulator Questions and Answers

* RTI Programming Environment (VMS and Tool Question and Answers)

If you would like to respond to something you have read on this

bulletin board, post a question to your "personal" conference

and the Project Team will respond to your comment either to you

individually or will post your comments and our responses to this

board.

Since we are using VAX Notes as a means for keeping track of questions and comments

relating to the development of GCS program versions, we would like to restrict the use of

the VAX/VMS Personal Mail Utility (MAIL).

In compliance with the project guidelines, GCS programmers should not refer to the

GCS experiment in any way when communicating with other GCS programmers• Mail

messages to the GCS project management team relating to project status information, etc.,

are permitted, but should not include questions relating to the GCS specification.

p. 4

3. Coding Standards for GCS Applications

This chapter contains modifications to the VMS FORTRAN Code Generation Guidelines[3]

that the programmers are required to use. Information contained in this section supercedes

specific sections of tile code generation guidelines and applies only for code used in GCS

applications.

Module Header Block -- 'Phe "ERRORS" field ill the module header shoul(l be changed

to "ERROR HANDLING", and should contain information about any embedded error

handling that the programmer has included that is not previously specified.

Revision History -- The revision history should contain the Problem Report (PR) number

associated with the change made during each version. Notation of changes by version

number should begin at the time of the design review of the application; therefore,

there should always be an associated PR, but only one PR for each problem. Note

that there are Revision Histories in both the Module Header Block and the Include

File Header Block.

Notation of Modifications -- Modifications to code should be noted with a version num-

ber as specified in the Guidelines. Also, the beginning of all areas of changes should

be noted with a comment line containing the following:

!+

!

I-

Begin changes PR#<prnumber> Vn

The end of change areas should be similarly marked by an "End Change" comment
line.

p. 5

4. Change Management

Changemanagementfor eachimplementationbeginsat the time of the programmer's design

review. I The teamwork 2 design diagrams created by each programmer will be placed under

configuration management as will tile code generated by each programmer. The teamwork

diagrams will be printed for the ¢h'sign review, and these hardcopies will I)e kept by the con-

figura.tion Tnanager (B. Edward With¢,rs) or l,he SQA r,,prcsent, ative (Stephen 1';. Duncan)

for later use in tracing changes in design and tracing requirements from design to code. Be-

ginning at the time of the design review, a problem report must be generated for each change

that is required. When the appropriate fix has been put into place, the SQA representative

must approve the change and certify that the change specified in the problem report (and

only that change) has been made to the design. To provide configuration management, each

problem report that requires a change to the design should be accompanied by a printout of

all pages of the design that have been modified.

The programmer's code will be placed under configuration management at the time of the

code review. Again, problem reports will be generated at the code review and throughout

the testing of the code. Some of these problem reports will only cause changes in the code,

while others will cause changes in the design as well.

Changes to code will require the programmer to request that the SQA representative or

the configuration manager reserve an official copy of his code for him to fix. When the code

has been fixed, the SQA representative must certify that the requested changes have been

made, then he may replace the corrected version of code in its library. (Note: the SQA

representative has full power to refuse to replace code if he feels that the problem has not

been correctly fixed, or if he feels that undocumented changes have been made.)

Each programmer will test his own version during the unit testing phase; thus, some of

the above rules will be relaxed somewhat? At the beginning of unit testing, a complete

copy of the programmer's code will be reserved and given to the programmer. During unit

testing, when a problem is encountered, the programmer should generate a problem report

and fix the problem in the code that he is using. When unit testing is finished, the SQA

representative will review the problem reports generated and the code that the programmer

submits to be replaced into configuration control. This should speed up the turnaround time

on changes made at this level of testing and reduce the overhead required.

1See the GCS Configuration Management Plan for details.

_Teamwork is a registered trademark of Cadre Technologies Inc.

aSee the Software Verification Plan for GCS for details.

p. 6

5. Error Handlers

GCS programmers may write very limited error handlers if they choose. The writing of error

handlers is not required by the GCS specification; however, since the goal is to write reliable

software, the use of error handlers may be desiral)l('.

Since this experiment is taske_l with studying errors discovered in independently de-

veloped Guidance and Control Software implemelltations, the experiment guidelines listed

below are more restrictive and, in some cases, are in direct conflict with critical-system error

recovery techniques. (For example, by preventing the use of VMS system services and/or

user-written assembler routines, the GCS implementations cannot possibly recover from an

arithmetic operation triggered overflow or underflow exception.)

If it is decided by a GCS programmer that an error recovery routine should be written,

the following guidelines must be observed:

Guidelines

• GCS Implementations must have the ability to execute with and without the

error handler(s) enabled. GCS implementations using error handlers should read

the error handler on/off setting information out of a data file. (The filename

should include the programmer's PLANET name as part of the file prefix.)

• Do not use error handlers in lieu of rethinking algorithms.

• Use error handlers only if they are natural to your programming style.

• Remember, error handling routines contribute to overall program complexity, so

use error handlers wisely.

• Follow system routine restrictions defined in the Implementation Notes Section of

the GCS Development Specification.

• Error handlers may be developed for single version testing; rnultiple paths and

parallel execution streams are not allowcd.

Mechanics

• An informational message about anomalous behavior of code should be written

out to FORTRAN logical unit 6 (FOR006). (You do not need to define a data

file to catch the output; it is done automatically for you by GCS_SIM.)

• Error handlers may only be written using VAX/VMS standard FORTRAN.

• No ASSEMBLER routines or DEC supplied library routines may be used.

• Errors can only be handled in a preventive manner. Error handlers may not

intercept system fatal errors; once the program fails at the system level, it fails.

It is important to note that this instruction overrides the section in the VMS FORTRAN

Code Generation Guidelines[3, Pages 11 and 12].

p. 7

6. Design Standards

Following are the design requirements for the GCS experiment.

The first requirement deals with the method of design to be used. Structured analysis

or structured design as described by Derek Hatley[4], Tom DeMarco[5] and Paul Ward and

Steven Mellor[6] should be used for the design of the applications.

The second requiremeJl{, is the use of a Computer Aided Software Engineering (CASE)

tool, teamwork. This tool is to be used to aid in the structured design of the applications,

and certain parts of the output from teamwork will be required for design and code reviews.

Teamwork is composed of several tools that are available to the designer. The components

of teamwork include, but are not limited to, the following components:

SA -- The base-line structured analysis tool,

RT -- An extension of SA that allows description of real-time systems, and

SD -- h parMlel tool that follows the Ward and Mellor approach.

It should be understood that the designer is free to use any of these tools a.s he sees fit,

provided at least one of them is used.

Use of teamwork is further restricted in that:

Process Specifications (P-Specs) and Module Specifications (M-Specs) should not be

greater than two pages in length when printed.

P-Specs and M-Specs should not contain comments to describe algorithms. (Pseudo-

code should describe algorithms, but comments may be used to describe notation.

Alternately, English may be used to describe the algorithms without using pseudo-

code.) Note that pseudo-code is allowed in P-Specs for this experiment despite Hatley's

recommendation that pseudo-code not be located in P-Specs

• The lists of input and output variables should be directly traceable to the specification.

(Any flows should be broken down to the elements as shown in the GCS Development

Specification before entering the P-Spec or M-Spec.)

• Before printing the hardcopy that will be delivered at the design review , a complete

"balance" check should be conducted on the model, and no .changes should be made

to the model between the last "balance" and the print.

p. 8

7. Design Documentation Outline

This chapter outlines th(' contents of the programmer (lesign (locumenta, tion. The document

l)roduccd from this outlilm will bc used for t,llc (h'sign review ;m(I may a,lso I)e used later to

trace changes to design. This document ma.y also prove to 1)_ l,scful to the progranlmcr as

well a.s the testing team while debugging tho cod('..

Below is a copy of a design document outline. Note that this is a SUGGESTED outline

and may be rearranged or modified by the programmer as desired. IIowever, all points in

the outline listed below MUST be addressed in the final design document.

I Introduction to Name of your planet

a) Top Level Description

Should give brief overview of the context of the code (e.g., simulates the on-board

navigational code for a planetary lander, etc.). This should also give a brief view

of the organization of your code.

b) Comments on Method

This subsection should contain any comments that the programmer feels are

needed in the contcxt of the philosophy or methods used during the design of

the software. Mcntion should be made of the tools used during design such as

teamwork/SA, i teamwork/SD, etc.

II Program Structure

a) Description of Program Structure

This subsection should contain a design structure description of the software and

should be organized with respect to the planned modules to be written, not nec-

essarily the organization of the GCS Development Specification. This description

may be contained within the data/control flow diagrams, or may be some type of
list that shows the call structure of the code.

b) Module Description

This subsection should contain a BRIEF description of each code module. (Again

this means the modules envisioned for the code and not the modules specified in

['hesc descriptions should map on a one-the GCS Development Specification.) '

to-one basis with the modules in the teamwork diagrams and should be limited

to one or two line descriptions. This description may include information about

design modules that may be combined into larger code modules.

III Data and Control Flow

This section should include the structured analysis/structured design diagrams, and it

may be that the design and control diagrams are actually combined into single diagrams

for each level.

1Teamwork is a registered trademark of Cadre Technologies Inc.

p. 9

a) Data Flow Description
This subsection should contai, data flow diagrams as well as any explanation that

the programmer feels is needed.

b) Control Flow Description

This subsection should contain control flow diagrams as well as any explanation

that the programmer feels is needed.

IV Coding Construction Notes

Note that some of the subsections lisltd 'may not be needed and thu._ are optional.

Mention should be mad_: of things ._ueh as exception handling, use of CMS, etc.

a) Algorithms Not Specified
This subsection should contain descriptions of any algorithms used that were

not supplied in the GCS Development Spee_ification. This does not imply that

the algorithms in the specification are to be ignored, only that there are some

algorithms that were left to the programmer's discretion.

b) Program Interrupts

This subsection should detail any program interrupts that were not required by

the GCS Development Specification but were placed into the code.

c) Tools Used to Construct/Manage Code
This subsection should address any tools to be used to construct or manage the

code.

d) Memory Size and Organization
This subsection should describe the size and organization of any memory used by

the application that was not required by the GCS application.

e) Data Dictionary
This subsection should contain a complete data dictionary as used by the pro-

grammer, including both specified and non-specified variables. Note this subsec-

tion may contain all the information required for memory size and organization,

thus negating the need for that subsection. This subsection is NOT optional.

f) References
References used for the design/construction of the code should be listed here.

This may take the form of a I)il)liogra,phy.

The design document should follow a format loosely similar to that of the GCS Develop-

ment Specification and/or the Hattey book on real-time system specification[4].

The programmer should supply a snapshot of teamwork files at the time of the design

review. The design document may reference parts of this snapshot rather than actually

including them; however, all such references should be clearly defined and easy to locate. A

hardcopy placed into a binder with sections clearly marked would be helpful.

The reference section of the design documcnt should include a rcfcrencc to the GCS

Development Specification, and if there is any information or lack of information from the

specification in the design document, this should be clearly marked.

p. 10

It is important to note that all documenta.tion should reference the planetary name of

the version, but not directly reference tile name of the programmer.

p. 11

8. Completing the Problem Report Form

The GCSProblemReport (PR) Form (Seethe S4"tware Verification Plan for GCS) is to be

used to document any changes made during the GCS project. The primary objective of the

PR form is to capture as much data as possible concerning a]l changes made after formal

verification has started in the project. The first, PR forms for an in@elnentation will be

filled out at the design review. Changes to the CCS Development Specification, the GCS

Design, tile GCS code, and GCS test cases must be documented. It is inaportant to have a

detailed description of each change and its corresponding fix so that any given stage of the

experiment can be recreated.

When a participant in the experiment (programmer, tester, SQA representative, or

User/Analyst) discovers a change in some part of the experiment that he feels should be

made, it is that person's responsibility to initiate a PR form. The following procedure

should be followed.

.

*'_..

The initiator of the PR form fills out the form through the section entitled "Explanation

of Fault/Error Detection."

The initiator gives the PR form to the person who will be making the changeJ All GCS

Specification changes go to the User/Analyst. All implementation specific changes go

to the implementation programmer. All test case changes go to the implementation

tester.

,

.

5.

The person who is going to make the change obtains those items that need to be

changed from the configuration management team for those items that need to be

changed. He makes the changes 2 and fills out the PR form a through the section:

"When did the error enter the system?"

The person who made the change discusses the change with the SQA representative. 4

If the SQA representative approves the change, the changed item is resubmitted to

configuration control.

6. The PR form is returned to the initiator.

7. The initiator checks to see that the proper change has been made and signs his approval

or returns the form to the person who made the change to be changed again.

1Sometimes the initiator and the person who makes the change will be the same person. In those cases,

it is still important that all of the information is captured on the PR form.

2If the change is in the code, it is documented as described in Section 3 of this document - Coding
Standards for GCS Applications.

sIf the change is in the design, a copy of the specific changed design diagram should be attached to the
PR form.

4While the programmer is performing unit testing, the SQA representative does not need to approve

changes, since the programmer handles his own configuration control during that stage. The SQA represen-
tative still has the final signature approval at the end of the cycle.

p. 12

8. The PR form goes to the SQA representative. His signature under SQA approval
completesthe form and he keepsit.

The PR form itself is largely self-explanatory. Specific instructions or furtller explanation

for some of the elements of the form are given below.

Page_of_ Be certain to fill out the relative page number on each form to help avoid the loss

of any pages of the PR form.

PR No. The PR No. is sequential starting at l for each implementation. The SQA repre-

sentative will keep track of the next available PR number.

Activity at Fault/Error Detection Time Check the appropriate box to describe the

activity which was being conducted when the fault was detected. The Reading Code s

box should be used by the programmer if a fault is noticed while another one is being
fixed.

Tester Approval Signature given by the initiator of the PR form.

General Version Number The version number which is used for configuration control.

Effort Hours for Fix Documentation of the amount of time involved in debugging and

correcting an error is important data, necessary for the analysis of the cost effectiveness

of the formal testing process.

Description of Problem and Fix A general description is appropriate; there is no need

to detail specific lines of code; citing them is sufficient.

Error Type Check the appropriate box using the descriptions 6 below as a guideline.

Computational Error- Any error in an equation, including:

• incorrect operand

• incorrect use of parenthesis

• unit or data conversion error

• missing computation

Control Flow Error- Any error which causes control to be passed to the wrong set of pseudo-

code or statements; or causes processes, pseudo-code, or statements to be performed

in the wrong order, including:

• incorrect operand in logical expression

• incorrect looping conditions

SDuring subframe testing, the programmer is prohibited from making any changes which are not directly
related to an observed failure.

6These categories were adapted from the RADC Software Test Handbook[7].

p. 13

• logic activities out. of sequence

Data Handling Error- Any error which relates to manipulating files or variables, including:

• data not properly defined/dimensioned

• data initialization not done

• data written or read in wrong format

• incomplete or missing output

• data referenced out of bounds

• storage space exceeded

Interface Error- Any error which involves calling other processes, including:

• subroutine arguments not consistent in type, units, etc.

• nonexistent subroutine called

• synchronization error

• timing violation

• deadlock

Operation Error- Any error which is caused by something outside what is being tested,

including:

• operating system error

• test case error

• simulator error

Inconsistency - Any error which is caused by contradictory parts in or between any GCS

documents, including:

• inconsistent or ambiguous requirements

• code does not match design

Other- Any error which cannot be characterized by one of the above, including:

• incompatibility with project standards

• code or design inefficient

• extra functionality present

Briefly describe the error on the lines provided.

Error Severity The following definitions are given in D0-178A as guidelines for determin-

ing criticality categories:

Critical - A failure which would prevent the continued safe flight and landing of the

spacecraft.

p. 14

Serious - A failure which would cause incorrect results but allow the spacecraft to

continue its flight.

Nonessential- A failure which would not significantly degrade spacecraft capability.

SQA Approval Signature of the SQA representative to be given after the change has been

verified to be correctly made and documented.

Continuation of Section The final page of th('_ problem report, form is to be used if ad-

ditional space is needed to record information. Identify the scction which is being

continued on the line provided. In the section itself, note that it is continued on

another page.

p. 15

9. Using the GCS Unit Test Log

Tile purpose of the GCS Unit Test l,og 1 is to enable the progralnmer to keep track of the

testing performed during unit testing. This instruction only describes how to use the test

log. It is not intended as a guide to all of the unit testing activities. For a description of unit

testing and a copy of the CCS Unit Test Log, see the Soft.ware Verification Plan for GCS.

The log consists of two different pages. Extra copies of either page should be added by

the programmer a.s necessary. A new test log will be created tbr each unit. On each page of

the test log the planet name, subframe, and unit name should be recorded in the appropriate

place. Oil the first page of the log, the input to and output from the unit should be recorded.

The input and output should consist of variables, with a brief definition if the name of the

variable does not clearly indicate its purpose. Obviously since most GCS variables reside

in the common regions of memory, the input and output for the unit will not be directly

referenced in a unit call. For the sake of testing, the input and the output should be anything

fl'om the common regions of memory which the unit uses and/or modifies as well as variables

which are passed in.

The second page of the GCS Unit Test Log is used to record test case information. The

programmer should follow the procedure outlined below.

1. Give the test case a number or other form of identification.

2. While designing the test case, record the input variables and their values.

. If there is an excessive number of inputs for a test case, it is permissible to indicate a

file name in the input column instead of listing all the variables and their values. If

the file method is chosen, a printout of the file should be attached to the log with the

test case number clearly marked on it. 2

. Determine the expected results by recording the output variables and their expected

values and expected accuracy where appropriate. The calculations required to deter-

mine the expected results should be included. Again, the file method may be chosen,

with a printout of the file attached.

5. After all test cases are recorded and any test drivers are written, the tests are run and

the date is recorded in the last column of the log.

6. Record the actual results of the test on the log, including the observed accuracy if

appropriate. Again, the file method may be chosen, with a printout of the file attached.

. If the actual results do not agree with the expected results (within the expected accu-

racy where appropriate), a GCS problem report form must be filled out and its number

recorded in the first column of the log.

1After testing of the implementations began, the name of the Module Test phase was changed to Unit
Test. Early GCS documents refer to a Module Test Log.

2Any files created during unit testing should be saved so that they may be placed under configuration
control at the conclusion of unit testing.

p. 16

8. If the problemwasactually with the test ca.s(r, one line should be drawn through that.

part of the t(,st case and an arrow should point to the corrected part of the test case.

A GCS problem report form does not need to be filled out.

9. After a problem is fixed and the test case is run again, the new actual results are

recorded. If there was not space oil the form, after the first execution of the test case,

the results should be written at the end of the test form with the test case number

serving to identify it.

10. When a correctly executed test case has to be run again, because of a change in the

unit caused by another test case, the new run date should be added to the "date test

executed" column. If the actual results of the rerun did not agree with the expected

results, that information must be recorded on a separate line.

11. When all tests have been satisfactorily executed and the stopping rules met, the total

number of test cases should be recorded on the first page of the log.

p. 17

10. New Formats for Documentation

Each programmer is required to create a GCS Design Description and GCS Source Listing. In

order to produce DO-178A documentation in a uniform format, a document driver template

has been created and exists ill a document template directory.

All documents are to be formatted using the document preparation system, IbTEX[8].

(Note:IbTEX user guides are ava, ilable for reference.)

The format of the text of the Design Description should follow tile format given in

Section 6 - Design Description Outline of this document.

The document driver templa.te for all GCS documents is in a directory referred to by the

TEX_LOC: logical. This logical is automatically defined when a programmer executes the

SETUP.COM file found in the project:[viking.gcs_tools] directory.

To obtain a copy of the document driver template, type the following command (where

planet is the programmer's assigned planet name and n is the docuInent number) at the

VMS system prompt:

$ copy TEX_LOC:doc_template. rex [directory] doc_planet_n_driver, rex

After making a copy of the document driver template, edit the copy of the file and follow

the instructions contained within the document driver template.

The cover sheet (report_cover.tex), the signature page (sigpage.tex), and the preface

(preface.tex) are generic template files that are included in DO-178A documents and all the

information for those templates is supplied by the document author in the document driver.

When the document driver is I_$TEXed, it uses the author's definitions to fill in the symbols

that are part of the three generic templates as it automatically includes the report_cover,

signature page, and preface.

p. 18

11. Accuracy Requirements

The requirements for tile accuracy of certain variables ill the GCS Development

Specification. is described in this programmer instruction. A minor problem discovered

during the analysis is also described.

Explanation of Requirements

The numerical data for the requirements will replace tile TBD entries in the data

requirements dictionary. The exact numbers will bc issued as a specification modification,

and the data will be incorporated into a future rele_use of the GCS Development

Specification. The following is an explanation of the numerical data given in the

specification modification.

The accuracy requirements are numerical values which describe a maximum allowable

amount of "distance" between two values. The values that will be compared will be a value

of the same variable at the same point in time for at least two different implementations.

The accuracy requirement for a variable x is symbolically designated as 6,_. Each variable

in the data requirements dictionary has its own accuracy requirement. The "distance"

between values is described in terms of relative error; that is, the variable x in one version

(xl) must be within 6, of the same variable in the second version, x2, according to the

following computation:

IX -- X21
_<8.

The accuracy requirements can also be referred to as a required number of significant

digits. That is, if _, is written in scientific notation, then xl approximates x2 to t

significant digits if t is the largest non-negative number such that 6, < 5 x 10 -t.

Description of Possible Problem

In FORTRAN, the variable types of all variables in mathematical operations are upgraded

to match the one with the "highest" variable type. (The order from lowest to highest is:

logical*l, logical*2, integer*2, integer*4, real*4, real*8, complex*8 and complex*16.) While

all other upgrades perform as expected, the upgrade from real*4 to real*8 adds nine

random digits after the last significant digit.

Example: the real*4 number 0.5050000 becomes the real*8 number 0.5049999952316284

Because there are no real*4 data types in the data dictionary in the GCS Development

Specification, this should pose no problem during coding. However, each programmer

should be aware that if real*4 data types are used and mixed with real*8 data types, there

is a potential problem for perturbing the results enough to conflict with the accuracy

requirements.

p. 19

12. Programmer Responsibilities

12.1. Introduction

]'his programmer instruction identifies tile different areas of programmer responsibility

with respect to testing, software quality assurance, and configuration management. It is

intended to be an overview of these procedures. All procedures are listed in more detail in

the Software Verification Plan for GCS, the Software Quality Assurance Plan for GC_, and

GCS Configuration Management Plan.

12.2. Design Review

Once the design is complete, the programmer and tester together decide when the

design is ready for review.

The programmer makes one copy of the teamwork design, and the copy and original

are circulated to the review team (user, tester and SQA representative) 48 hours before
the review.

The programmer starts the review by giving a brief overview of the design.

The programmer leads the team through the design by explaining the design diagrams,

interpreting the design, and answering any questions about it.

The design will be checked against the GCS Requirements Traceability Matrix and

GCS Design Review Checklist, which are in an appendix to the Software Verification

Plan for GCS.

Once the review is finished, the programmer is responsible for completing problem

reports relating to the design and changing the design appropriately.

12.3. Code Review

• After the code has been written, compiled, and linked without error, a version of the

code will be put under configuration management. Before the Code Review, NO PART

of the code should be executed.

p. 20

The programmerand tester decidetogether when the codeis ready for review. The
codewill becheckedagainsttheGCSRequirementsTrace_tbilityMatrix and GCSCode
ReviewChecklist,whichare in anappendixto the Software Verification Plan for GCS.

The code will also be checked against tile design.

Tlle programmer gives a copy of the selected units to each member of the review team

(user, tester and SQA representative) at least 2/1 hours b,_'fore the review so that the

review team members can look over the units prior to the review.

The programmer starts the review by giving an overview of each code unit. The

overview should include the function of the unit, where it fits in the subframe and the

relationship of the unit to the design.

• The programmer leads the team through the code by reading it aloud, line by line,

interpreting the code and answering any questions about it.

• Once the review is finished, the programmer is responsible for completing problem

reports relating to the code or design, and changing the code or design appropriately.

12.4. Unit Testing

The programmer is fiflly responsible for the unit testing. While a brief outline of the proce-

dure is listed below, the programmer is encouraged to read the Unit Testing section of the

Software Verification Plan for GCS.

The User/Analyst will provide the programmer with one set of run parameters which

the programmer can use during testing.

The programmer will have his/her own CMS library during unit testing. Each entry

in the CMS library should correspond to a unit test case.

The programmer builds and executes at least three test cases per unit for a minimum

of 20 test cases per subframe. Each test case must be logged on GCS Module Test

Log forms, which are found in an appendix to the Software Verification Plan for GCS.

There should be one test log per code unit.

The programmer must re-execute any test case which found an error until all test cases

execute correctly.

If more than 20 lines of code have been added or modified, the code must go through

another code review.

Following Unit Testing, there will be a test completion review which will check that

the correct number of tests were performed, all tests were logged, and all problems
were corrected.

p. 21

12.5. Subframe, Frame and System Testing

• The tester performs the subframe, fl'ame, and system testing.

The programmer fixes any problems found after a complete test run and completes the

accompanying GCS Problem Report Form for each error. If an error is traced to the

design, a problem report form is filled out and the programmer fixes the design error.

• If more than 20 lines of cocte have been added or modified during one code fix, the

code must go through another code review.

• After the programmer fixes all problems, the tester will rerun the test cases to insure

that all test cases run correctly.

Once all fixes are complete, the programmer submits the corrected code to SQA for

entry into CMS.

• A test completion review is held to check that all problems were corrected and are

appropriately marked in the code.

p. 22

References

[1] RTCA Special Committee 152. Software Considerations in Airborne Systems and Equip-

ment Certification. Technical Report RTCA/DO-178A, Radio Technical Commission for

Aeronautics, March 1985.

[2] George B. Finelli. Results of software error-data experiments. In AIAA/AHS/ASEE

Aircraft Design, Systems and Operations Conference, Atlanta, GA, September 1988.

[3] Alan Roberts, Don Rich, and John Pierce. Internal Document : VMS FORTRAN Code

Generation Guidelines. Software R & D Department, Center for Digital Systems Re-

search, Research Triangle Institute, Research Triangle Park, NC, June 1986.

[4] Derek J. Hatley and Imti_ A. Pirbhai. Strategies for Real-Time System Specification.

Dorset House Publishing Company, New York, New York, 1987.

[5] Tom DeMarco. Structured Analysis and System Specification. YOURDON Inc., 1133

Avenue of the Americas, New York, NY 10036, 1978.

[6] Paul Ward and Steven Mellor. Strucured Development for Real-Time Systems. Prentice-

Hall Inc., Englewood Cliffs, New Jersey, 1985.

[7] E. Presson. Software Test Handbook/Software Test Guidebook. RADC-TR 84-53, Rome

Air Development Center, March 1984.

[8] Leslie Lamport. ItTEX: A Document Preparation System.. Addison-Wesley Publishing

Company, Inc., Reading, Massachusetts, 1986.

p. 23

NA..qA

1. Report No,

NASA TM-I02721

4, Title and Subtitle

GCS Programmer's Manual

Report Documentation Page

2, Government Acce_ion No.

7, Author(s)
Douglas S. Lowman, B. Edward Withers,
Anita M. Shagnea, Leslie A. Dent, and

Kelly J. Hayhurst

9. Pe_orming Organization Name and Addre_

NASA Langley Research Center

Hampton, VA 23665-5225

12. Sp<msoring Agency Name and Addre_

National Aeronautics and Space
Washington, DC 20546-0001

Administration

3. Recipient's cata'log No.

51 'l_eport Date

December 1990

6. Performing Organization Code

8. Performing Organization Report No.

10. Work Unit No.

505-66-21-03
11. Contract or Grant No.

i3. Type of Ral_o_ and Period Covered

Technical Memorandum

14. Sponsoring Agency Code

lS. Supplementa_Notes

Douglas S. Lowman, B. Edward Withers, Anita M. Shagnea, and Leslie A.

Research Triangle Institute, Research Triangle Park, North Carolina.

Kelly J. Hayhurst: Langley Research Center, Hampton, Virginia.

Dent :

i6. Abstract

This document describes a variety of instructions to be used in the development of implementations
of software for the Guidance and Control Software (GCS) project. This document fulfills the
Radio Technical Commission for Aeronautics RTCA/DO- 178A guidelines, "Software

Considerations in Airborne Systems and Equipment Certification" requirements for document

No. 4, which specifies the information necessary for understanding and programming the host
computer, and document No. 12, which specifies the software design and implementation
standards that are applicable to the software development and testing process. Information on the

following subjects is contained in this paper: activity recording, communication protocol, coding
standards, change management, error handling, design standards, problem reporting, module
testing logs, documentation formats, accuracy requirements, and programmer responsibilities.

17, Key WordslSuggest_ byAuthor(s))
Guidance and Control Software

Communication Protocol

Programmer Instruction

Design and Coding Standards

(GCS)

19.SecuriWCis_if, lofthisrepon)

Unclassified

18. Distributmn Statement

Unclassified - Unlimited

20. Security Chluif. (of "this page)

Unclassified

Star Category 61

21. No, of pages

28

I 22. Price

A03

IASA FORM i OCT 86
I

